Skip to content Skip to sidebar Skip to footer

Observer Design for Systems With Continuous and Discrete Measurements

Abstract

Method for the synthesis of state observer for continuous systems with sampled-data measurements, Lipschitz nonlinearities, uncertain disturbances and measurement errors is proposed. It based on the using of a continuous observer, which is modified for the case of discrete measurements. Sufficient conditions for observers to provide finite time boundedness of the estimation error with respect to the given sets of initial deviations and admissible trajectories are expressed in the solvability of differential-difference linear matrix inequalities. The results are illustrated on the example of manipulator with flexible joint links.

REFERENCES

  1. A. J. van der Schaft, ''On nonlinear observers,'' IEEE Trans. Autom. Control 30, 1254–1256 (1985).

    Article  Google Scholar

  2. H. K. Khalil, Nonlinear Systems (Prentice Hall, Upper Saddle River, NJ, 2002).

    MATH  Google Scholar

  3. J-P. Gauthier and I. Kupka, Observability and Observers for Nonlinear Systems (Cambridge Univ. Press, Cambridge, 2004).

    MATH  Google Scholar

  4. G. Besancon, Nonlinear Observers and Applications (Springer, Heidelberg, 2007).

    Book  Google Scholar

  5. M. Abbaszadeh and H. J. Marquez, ''Robust filtering for Lipschitz nonlinear systems via multiobjective optimization,'' J. Signal Inform. Process. 1 (12), 24–34 (2010).

    Article  Google Scholar

  6. L. Hetel, C. Fiter, H. Omran, et al, ''Recent developments on the stability of systems with aperiodic sampling: An overview,'' Automatica 76, 309–335 (2017).

    Article  MathSciNet  Google Scholar

  7. P. E. Moraal and J. W. Grizzle, ''Observer design for nonlinear systems with discrete-time measurements,'' IEEE Trans. Autom. Control 40, 395–404 (1995).

    Article  MathSciNet  Google Scholar

  8. M. Arcak and D. Nesic, ''A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation,'' Automatica 40, 1931–1938 (2004).

    Article  MathSciNet  Google Scholar

  9. I. Karafyllis, T. Ahmed-Ali, and F. Giri, ''A note on sampled-data observers,'' Syst. Contr. Lett. 144 (2020).

  10. T. Raff, M. Kögel, and F. Allgöwer, ''Observer with sample-and-hold updating for Lipschitz nonlinear systems with nonuniformly sampled measurements,'' in Proceedings of the American Control Conference (IEEE, 2008), pp. 5254–5257.

  11. W. H. Chen, D. X. Liand, and X. Lu, ''Impulsive observers with variable update intervals for Lipschitz nonlinear time-delay systems,'' Int. J. Syst. Sci. 44, 1934–1947 (2013).

    Article  MathSciNet  Google Scholar

  12. F. Deza, E. Busvelle, J. Gauthier, et al., ''High gain estimation for nonlinear systems,'' Syst. Contr. Lett. 18, 295–299 (1992).

    Article  MathSciNet  Google Scholar

  13. T. Ahmed-Ali, E. Fridman, F. Giri, et al., ''Using exponential time-varying gains for sampled-data stabilization and estimation,'' Automatica 67, 244–251 (2016).

    Article  MathSciNet  Google Scholar

  14. M. Farza, M. M´Saad, M. L. Fall, et al., ''Continuous-discrete-time observers for a class of mimo nonlinear systems,'' IEEE Trans. Autom. Control 59, 1060–1065 (2014).

    Article  MathSciNet  Google Scholar

  15. L. Etienne, L. Hetel, D. Efimov, et al., ''Observer analysis and synthesis for Lipschitz nonlinear system under discrete time-varying measurements,'' IFAC PapersOnLine 50, 2941–2946 (2017).

    Article  Google Scholar

  16. M. Nadri and H. Hammouri, ''Design of a continuous-discrete observer for state affine systems,'' Appl. Math. Lett. 16, 967–974 (2003).

    Article  MathSciNet  Google Scholar

  17. I. Karafyllis and C. Kravaris, ''From continuous-time design to sampled-data design of observers,'' IEEE Trans. Autom. Control 54, 2169–2174 (2009).

    Article  MathSciNet  Google Scholar

  18. A. I. Malikov, ''State observer synthesis by measurement results for nonlinear Lipschitz systems with uncertain disturbances,'' Autom. Remote Control 78, 782–797 (2017).

    Article  MathSciNet  Google Scholar

  19. A. I. Malikov, ''State and unknown inputs finite time estimation for time-varying nonlinear lipschitz systems with uncertain disturbances,'' IFAC-PapersOnLine 50, 1439–1444 (2017).

    Article  Google Scholar

  20. A. I. Malikov, ''State and unknown inputs observers for time-varying nonlinear systems with uncertain disturbances,'' Lobachevskii J. Math. 40 (6), 769–775 (2019).

    Article  MathSciNet  Google Scholar

  21. A. I. Malikov, ''State estimation and stabilization of continuous systems with uncertain nonlinearities and disturbances,'' Autom. Remote Control 77, 764–778 (2016).

    Article  MathSciNet  Google Scholar

  22. A. I. Malikov, ''State estimation and stabilization of nonlinear systems with sampled-data control and uncertain disturbances,'' Autom. Remote Control 82, 634–653 (2021).

    Article  Google Scholar

  23. A. I. Malikov, ''State estimation and stabilization of discrete-time systems with uncertain nonlinearities and disturbances,'' Autom. Remote Control 80, 1976–1995 (2019).

    Article  MathSciNet  Google Scholar

  24. A. I. Malikov and D. I. Dubakina, ''Numerical methods for solving optimization problems with differential linear matrix inequalities,'' Izv. Vyssh. Uchebn. Zaved., Mat. 4, 74–86 (2020)

    Google Scholar

Download references

Author information

Authors and Affiliations

Corresponding author

Correspondence to A. I. Malikov.

Additional information

(Submitted by D. A. Gubaidullin)

About this article

Verify currency and authenticity via CrossMark

Cite this article

Malikov, A.I. State Observer for Continuous Lipschitz Systems with Dicrete Measurements and Uncertain Disturbances. Lobachevskii J Math 42, 2172–2178 (2021). https://doi.org/10.1134/S1995080221090183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI : https://doi.org/10.1134/S1995080221090183

Keywords:

  • continuos system
  • Lipschitz condition
  • uncertain disturbances
  • discrete measurements
  • observer design

huffcomplem93.blogspot.com

Source: https://link.springer.com/article/10.1134/S1995080221090183

Post a Comment for "Observer Design for Systems With Continuous and Discrete Measurements"